UL Task Group Project Update

March 27, 2019

Task group roster

Brown, Chris Self chris.brown47@gmail.com General

Deng, Lei General Electric Lei.Deng@ge.com Producer

Adam Lilien Underwriters Laboratories Adam.Lilien@ul.com User

Figueiro, Mariana Rensselaer figuem@rpi.edu General

Lewis, Alan Self allod@comcast.net General

Noveda Technologies grao@noveda.com User

Terry McGowan

Manufacturer

Salk Institute

General

Rao, Govi

satchin@salk.edu

Lighting Ideas, Inc.

lightingideas@yahoo.com

Panda, Satchidananda

Rea, Mark (chair) Rensselaer ream@rpi.edu Task Group Chair

Steele, Chris Navy Christopher.t.steele3.mil@mail.mil User

Steverson, Bryan General Services Admin (GSA) bryan.steverson@gsa.gov User

Walker, Amy Underwriters Laboratories Amy.K.Walker@ul.com Task Group Secretary

Karen Willis NEMA Karen.Willis@nema.org Manufacturer

Yandek, Ed Self eyandek@aol.com General

Recommended Practice

- This document is intended for use by those who design and specify lighting in buildings and wish to provide light for vision and for circadian entrainment for typical day-active and night-inactive people.
- Provide a light measurement and lighting specification methodology as well as a method for verification of effect

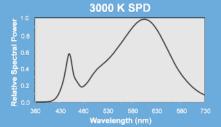
Recommended Practice

- The amount of light equivalent to that, after one hour of exposure, capable of suppressing the production of melatonin at night by 30% (CS = 0.30) should be continuously available at the occupant's eyes for a minimum of two hours during daytime.
- In <u>very simple terms</u>, this translates into a vertical illuminance at the eye (E_v) of 350 lx for warm sources and 200 lx for cool sources

Outline

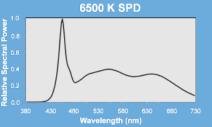
- Quick Guide
- Specification Guide
- Brief Overview
- Recommended Practice
- Appendix A: Informative General Research and Supporting Science
- Appendix B: Circadian Entrainment
- Appendix C: Worked Examples

QUICK GUIDE


- Step 1: Establish a circadian-effective light design criterion (e.g., CS = 0.3)
- Step 2: Select a luminaire type (e.g., direct/indirect)
- Step 3: Select a light source (e.g., 3000 K LED)
- Step 4: Perform photometrically realistic software calculations for the building space (e.g., AGi32)
- Step 5: Calculate CS from the vertical illuminance at the eye (E_v) and the spectral power distribution (SPD)
- Step 6: Determine if the selected lighting system meets the circadian-effective lighting design criterion; repeat steps 2-6 if necessary

Specification Guide

١	Time	CS	3000 K			4000 K			5000 K			6500 K		
			E _∨ (lux)	E _H (lux)	LPD (W/ft²)	E _∨ (lux)	E _H (lux)	LPD (W/ft²)	E _∨ (lux)	E _н (lux)	LPD (W/ft²)	E _∨ (lux)	E _н (lux)	LPD (W/ft²)
	7:00 AM - 4:00 PM	0.3	275	483		375	659	0.74	265	466	0.55	200	351	0.43
	4:00 - 5:00 PM	0.3 >> 0.2			0.52									
	5:00 - 7:00 PM	0.2	175	307		225	395		175	307		125	220	
	7:00 - 8:00 PM	0.2 >> 0.1												
	8:00 PM - EOB	0.1	75	132		100	176		105	184		50	88	



<u>ب</u>ہ 🖁

Please note that calculations are based on average SPDs and distributions. Different spectra and distributions may result in different illuminance and CS values.

Appendix C: Worked Examples

<u>A general method:</u> Specifying E_v and SPD will provide an estimate of CS

Next step

 Task Group votes for/against a 45-day public review period Thank you